Try to find a good excuse!

BRA-2015 (Workshop on Belief Revision and Argumentation)

Bernhard Nebel & Moritz Gobelbecker

Department of Computer Science
Foundations of Artificial Intelligence

Albert-Ludwigs-Universitét Freiburg

FREIBURG

2
=

Finding excuses

Motivation

BRA 2015

UNI

FREIBURG

Planner-Based Agent Architectures

FREIBURG

Planner-based
agents can
- anticipate the future

- compose behaviors /
motor programs into
complex action

sequences
- In order to achieve

goals

N in | | nnin : From final demonstration of
Cont ,ua_ pia 9 our TIDY-UP project
- monitoring

- replanning

BRA 2015 3

Incompetence: No plan can be found!

If the robot fails to
execute an action, it
possibly can recover
from it

If the robot fails to

come up with a plan,

this is really annoying!

- domain is not correctly
modeled

- perhaps there are
intrinsic reasons (no
resources available)

BRA 2015

UNI
FREIBURG

At least, we want to
know what went wrong

Come up with a
counterfactual
explanation (excuse)

- if only the door were
unlocked, | could find a
plan to get the coffee
and the book for you

- Determine a minimal
perturbation of the
planning task

Finding excuses

What is action planning?

BRA 2015

UNI

FREIBURG

What is planning (in our context)?

UNI
FREIBURG

Planning is the process of generating (possibly
partial) representations of future behavior prior
to the use of such plans to constrain or control
that behavior:

- Planning is the art and practice of thinking before
acting [Haslum]

Kinds of planning:

- Trajectory planning

- Manipulation planning

- Action (or mission) planning

BRA 2015 6

Action planning 2
B
2 e
Given -
- an initial state (usually described by using Boolean state
variables),

- a set of possible actions,
- a specification of the goal conditions,

» generate a plan that transforms the current state into a goal
state — if there exist one.

7 FreeCell-Spielnr. #22786 13‘:» FreeCell-Spielnr. #22786 _Iglll
Verbleibende Karten: 0

F]

Uz =
RN, W

BRA 2015 7

Another planning task: Logistics

UNI
FREIBURG

Given a road map, and a number of trucks and
airplanes, make a plan to transport objects from their
start positions to their destinations.

e e e] — o — — — — —]

BRA 2015 8

Household Robot domain

Given a floor plan, the
position of objects and
the state of the doors,
make a plan to
transport objects from
their start positions to
their destinations.

UNI
FREIBURG

Domain-independent action planning

UNI
FREIBURG

We would like to solve these problems using a general
domain-independent solver.

Start with a declarative specification of the planning
task at hand.

Use a domain-independent planning system to solve
the general planning problem

Issues:
- What specification language shall we use?
- How can we solve such planning tasks efficiently?

BRA 2015 10

A planning formalism: Basic STRIPS

UNI
FREIBURG

STRIPS: STanford Research |nstitute Problem Solver

Operators: <para, pre, eff>

- para: parameters

- pre: conjunctive precondition of atomic facts

- effects: literals that become true after execution of the action

Actions: variable-free (instantiated) operators
Initial state description: all positive ground atoms
Goal description: conjunction of ground literals

Example for move operator in the Robot domain:

- <(R,S,D), and(room(R), room(S), door(D), unlocked(D), ,
conn(D,R,S), rin(R)), (7rin(R), rin(S)) >

Plan: sequence of actions transforming initial state
Into a goal state

BRA 2015 1

Household example (1)

FREIBURG

Logical atoms:

- room(R), door(D), keyfor(O,D), object(O), rin(R), rholds(O),
rfree(), in(O,R), conn(D,R1,R2), unlocked(D)

UNI

Operators:
- Move operator (R, S, D): ...
- Take operator (O,R):
Precondition: and(object(O), room(R), in(O,R), rfree())
Effects: 7in(O,R), —rfree(), rholds(O)
- Put operator (O,R): ...
- Unlock operator (K,D,R,S)

Precondition: and(object(K),door(D), room(R), room(S),
rin(R), conn(D,R,S), keyfor(K,D), ~unlocked(D), rholds(K))

Effects: unlocked(D)

BRA 2015 12

Household example (2)

Initial state (described by true ground atoms):

- S = {object(c), object(k), room(r1), room(r2),
door(d), rin(r1), in(c,r2), conn(d,r1,r2),
conn(d,r2,r1), keyfor(k,d), rholds(k)}

Goal description:

- G ={in(c,r1)}

Executing unlock(k,d,r1,r2):

- §’= S8 U {unlocked(d)}

Succesful plan:

- A = <unlock(k,d,r1,r2), put(k,r1), move(r1,r2,d),
take(c,r2), move(r2,ri1,d), put(c,r1)>

UNI

FREIBURG

Datalog- and propositional STRIPS

UNI
FREIBURG

STRIPS as described allows for unrestricted first-order
terms, i.e., arbitrarily nested function terms

- Infinite state space

» semi-decidability

Simplification: No function terms (only O-ary terms =
constants)

- DATALOG-STRIPS

» EXPTIME-complete

Simplification: No variables in operators (=actions) or
only fixed arity of predicates

- Propositional STRIPS — used in planning algorithms
nowadays (but specification is done using DATALOG-
STRIPS)

» PSPACE-complete

BRA 2015 14

Finding excuses

What can be an excuse?

BRA 2015

15

UNI

FREIBURG

Changing a planning task: Excuse types

One could modify operators (teleport through
closed doors):

- weaken preconditions
- delete unwanted side effects
- add wanted effects

One could change/reduce the goals (bring
only the book)
- only reduction makes sense

One could change the initial state (door
unlocked)

UNI

FREIBURG

What 1s a reasonable excuse?

UNI
FREIBURG

Reducing goals is sensible, but is already dealt with
by oversubscription planning, i.e. we will ignore that
here.

For operator modifications, every type of modification
seems to be reasonable.

For initial state modification, making goals directly true
does not seem to make sense (which could lead to
non-existence of excuses!).

There are many more operator modifications than
state modifications (22" compared to 2").

For every state mod. we can find an op. mod, but not
vice versa.

We focus on initial state modifications as excuses!

BRA 2015 17

Excuses formally 2
0]
Given a planning task l=(A,O,l,G), with A being :ZE

the set of ground atoms, O being the operators,
| the initial state description, and G the goal
description, the set E £A is an excuse |ff

['11s unsolvable,
E does not contain atoms mentioned in G,
I[E] is a set such that a € [[E] iff

1. a€land a ¢E or
2. a¢land a €E,

M[E]=(A,O,I[E],G) is solvable.

That is, E describes which for which atoms the truth
value has to be changed to make [l solvable.

Finding excuses

Possible orderings over excuses

BRA 2015

19

UNI

FREIBURG

Preferring Excuses

UNI
FREIBURG

Even excluding excuses that make goals true
directly (or more restrictively excluding mutex-
classes), many possibilities remain.

One could order them (E and E’ being
excuses) by:
- set inclusion: E is preferred over E’if ECE’;
- cardinality: E is preferred over E’ if |E|<|E;
- accumulated weight: Given a weight function w
from ground atoms to real numbers, E is preferred

over E’if 3 ,gW(e) < ¥ oeeW(e);
- lexical ordering over linearly ordered priority
classes.

BRA 2015 20

Excuses with causal relations

We could get book1,
If door2 were
unlocked.

We could get book1,
If we had key?2.

We could get book1,
If door1 were
unlocked.

UNI
FREIBURG

Preferring causes

We prefer an excuse E over E’ if there is a
plan from I[E] to the goal that contains a state

13

“satisfying the excuse E”.

Interestingly, this preference relation by itself
is not transitive (since changes by actions are
non-monotonic), but we could take the
transitive closure.

The relation is orthogonal to the other
preference relations and can be combined
with it arbitrarily.

UNI
FREIBURG

There 1s a Hole 1n the Bucket ...

The robot could get the coffee, if
door1 were unlocked,
- we had key 1,
- door2 were unlocked
- we had key 2
- door2 were unlocked

BRA 2015

UNI
FREIBURG

= All excuses in a cycle
appear to be equally
plausible, and should
therefore be
equivalent.

23

Finding excuses

Computational complexity

BRA 2015

24

UNI

FREIBURG

Computational Complexity

UNI
FREIBURG

Three different reasoning problems:

- Existence of an excuse (i.e. original task is
unsolvable and excuse is possible).

- Relevance of a ground atom: it is part of one
preferred excuse.

- Necessity of a ground atom: it is part of every
preferred excuse.

All these problems are not harder than

planning, provided the underlying planning

problem is in a complexity class closed under

complementation (e.g. PSPACE) and allows to

force operators applied in phases.

BRA 2015 25

Reductions for excuse existence 55%
0]
2w
Turing reduction from Turing reduction from =%
planning to excusing: excusing to planning:
- Given a task |_|, - Given a taSk’ |_|, .
construct planning task construct [by adding
[T with new atom a; initial change

- this atom is added to all operators” for allowed

preconditions and false atoms/fluents.
initially; - If there exists a plan for

- test whether there are [T, but not for [], then

; there exists some
1:eoxrcul_sl_es for [, but not excuse for [

- if so, []is solvable,
otherwise not

BRA 2015 26

Finding excuses

Some computational experiments

BRA 2015

27

UNI

FREIBURG

Computing Excuses

We use our (optimizing)
planning system (Fast
Downward)

Using the idea from the
reduction, we introduce
change operators, which
can only be applied in an
initial phase

The main issue (for
efficiency) is to limit the
number of these
operators!

BRA 2015

UNI
FREIBURG

We consider only static
facts

Possible cycles are
detected using the
causal graph

This is enough on
domains with a certain
structure (mutex-free
static fluents, strongly
connected fluents)

On general domains, we
might not get all possible
excuses!

28

Empirical Results (1) O
mpirical Results =
| E |

2 Ll

sat 0 opt 0 sat 1 opt 1 sat 2 opt 2 sat 3 opt 3 sat 4 opt 4 m

logistics-04 0.78s 1.43s 0.69s (0.5) 0.94s (0.5) 0.71s (1.5) 1.02s (1.5) 0.53s (1.0) 0.57s (1.0) 0.52s (2.5) 1.29s (2.5) : LL
logistics-06 0.75s 9.81s 0.74s (1.5) 28.12s (1.5) 0.65s (2.5) 101.47s (2.5) 0.65s (3.0) 55.05s (2.5) 0.62s (3.5) 43.57s (3.5)
logistics-08 1.27s 76.80s 1.27s (1.0) 276.99s (1.0) 1.17s (1.0) 46.47s (1.0) 1.08s (5.5) 1176.49s (3.5) 0.96s (5.5) 1759.87s (4.5)
logistics-10 2.62s - 2.24s5 (2.0) - 2.36s (5.5) - 2.255(4.0) e 1.29s (5.5) -
logistics-12 2.58s — 2.66s (2.0) — 2.66s (4.5) — 2.28s(5.0) — 1.89s (6.5) —
logistics-14 4.73s — 4.78s (2.5) — 4.245 (6.0) — 3.70s (7.5) — 2.71s (6.0) —
rovers-01 3.04s 3.61s 3.09s (0.5) 5.72s (0.5) 3.17s (1.5) 8.17s (1.5) 2.79s (5.5) — 2.90s (7.5) —
rovers-02 3.25s 3.79s 3.245(0.5) 4.45s (0.5) 3.31s(2.5) 21.48s(2.5) 3.235 (3.0) 62.36s (3.0) 2.87s (6.5) —
rovers-03 4.15s 5.53s 4.115 (0.5) 7.90s (0.5) 3.55s (2.5) 112.43s5 (2.5) 4.04s (5.5) — 3.67s (6.5) —
rovers-04 5.01s 6.53s 4.94s (1.0) 8.97s (0.5) 68.60s (5.0) 22.01s (2.0) 3.215 (6.0) — 9.45s (12.0) —
rovers-05 5.29s — 6.235 (2.0) 925.61s (2.0) 7.25s (4.0) — 5.825 (5.0) 790.57s (5.0) 6.32s (8.0) —
storage-01 1.77s 1.83s 2.01s (0.5) 2.31s (0.5) 1.71s (3.0) 2.115 (2.0) 1.84s (5.0) 24.81s (4.0) 1.82s (4.5) 11.12s (3.5)
storage-05 11.14s 15.66s 10.85s (0.5) 37.09s (0.5) 8.25s (4.0) 53.38s (4.0) 10.25s (6.0) — 31.70s (6.0) —
storage-08 30.46s 101.32s 35.59s (1.5) — 774.17s (5.5) — 765.32s (7.5) — 110.31s (8.5) —
storage-10 88.07s 214.10s 62.93s (1.0) — 64.56s (2.0) — 423.71s (3.0) — 257.10s (4.0) —
storage-12 131.36s — — — — — — — — —
storage-15 1383.65s — — — — — — — — —

Instances from the international planning competition
Limits: 2GB memory and 30 min CPU time
satx is satisficing while optx is optimal planning

x shows difficulty in repairing, whereby x=0 is the original (solvable)
problem

Numbers in parentheses are weights

All in all, it appears that it is possible to find excuses in reasonable time
— provided the task was not too difficult

29

Empirical Results (2) 9
B
zl.u

rooms sat opt rooms sat opt = E
3 0.91s (1) 0.97s (1) 10 19.20s (2) 368.09s (1)
4 1.2s (1) 1.72s (1) 11 57.39s (2) 849.69s (1)
5 1.75s (1) 4.23s (1) 12 72.65s (2) 1175.23s (1)
6 2.19s (2) 10.69s (1) 13 84.45s (2) -
7 4.24s (2) 27.01s (1) 14 215.05s (2) —
8 6.03s (2) 65.15s (1) 15 260.39s (2) —
9 14.22s (2) 158.28s (1) 16 821.82s (2) —

Results for cycles with a varying number of rooms (and
keys)

Otherwise the same conditions as before

BRA 2015 30

O
Related Work 2
B
2 e
Similar to abduction (Pierce) Similar to counterfactuals ==
- Given a consistent logical (Lewis)
theory T, a set of literals A - Given a logical theory L and
(abducibles), and a set O an implication a & b
(o.bservatllohs) — Determine the truth of the
- Find a (minimal) subset implication by (minimally)
ECAstTE-O changing the theory in order
Similar to diagnosis (Reiter): to make a true.

- Given a logical theory Tand a — Revision and Update
set of literals N (normality

- when using DL formulae
assumptions) s.t. TUN is J

! (Herzig)
consistent and measurments o
M Excuses are a bit different
- Find a (minimal) subset - action sequences
FS Nst TUN-F)UMis > notion of causality

consistent » for this reason, regression

and cyclic excuses!

BRA 2015 31

With planner-based agent things can go
wrong.

In particular, it is possible that no plan can be
found.

We may want to know why: Find an excuse!
This appears to be possible in most case.

UNI
FREIBURG

What happens for other types of planning?

Are there reasonable definitions for operator-
based excuses?

